Probabilistic Method and Random Graphs

Lecture 8. The Method of Counting&Expectation

Xingwu Liu

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

¹The slides are mainly based on Chapter 6 of Probability and Computing.

Comments, questions, or suggestions?

Recap of Lecture 7

- Random graphs with fixed degree distribution
- Preferential attachment, rewired ring
- The existence of (sharp) threshold functions
 - Mostly on $\mathcal{G}_{n,p}$
 - Sharp threshold functions of connectivity: $\frac{\ln n}{n}$
 - That of major component existence: $\frac{1}{n}$
- A Hamiltonian cycle can be found efficiently w.h.p. in $\mathcal{G}_{n,p}$ with $p \geq 40 \frac{\ln n}{n}$

Probabilistic Method

-Elegance from graph theory

- A warm-up example:
 - n players against each other
 - "Top-k" players get prize

- But, are you sure no controversy exists?
 - Controversy: prize-winners all defeated by a loser
- Unfortunately, when players are too many, controversy does exist w.h.p.

Proof (non-constructive)

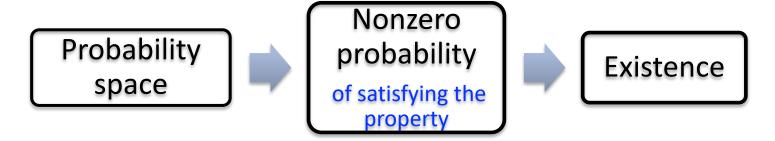
- S: a k-subset of players
- A_S : no player beats all member of S
- Consider a random tournament
- $Pr(A_S) = (1 2^{-k})^{n-k}$
- Pr(no controversy) = Pr($\bigcup A_S$) $\leq \sum \Pr(A_S) = \binom{n}{k} (1 - 2^{-k})^{n-k}$ $= o\left(\frac{1}{n}\right)$
- Find a controversial one? Just sampling

Cool?

A piece of cake in probabilistic method!

What is the Probabilistic Method?

- Proving the existence of an object satisfying a certain property without constructing it
- Underlying principle



- Pioneered by Erdős in 1940's
- Construct by flipping coins
- Naturally lead to (randomized) algorithms

Main Probabilistic Methods

- Counting argument
- First-moment method
- Second-moment method
 - Higher-moment method
- Lovasz local lemma

3

Counting Argument

Construct a probability space and calculate the probability

Algorithm design: sampling

- Application
 - Tournament
 - Ramsey number: an observation by S. Szalai, 1950's

Ramsey Number

- Given a complete graph K(n), 2-color its edges
- Ramsey number R(k, l)
 - the smallest number n such that for every complete graph G with at least n vertices, any 2-coloring of G would either has a red K(k) or a blue K(l)

There is a coloring without red K(k) and blue K(l)

R(k, l)

Every coloring has either a red K(k) or a blue K(l)

Number of vertices of the complete graph

Ramsey Number is Well defined

- Ramsey Theorem: R(k, l) is finite for any k, l
 - Proved by F. Ramsey in 1930 and determined R(3,3)
 - Origin of Ramsey theory
 - The existence of rather large good substructure in a big structure
 - How much is R(k, l)?
- Upper bound: $R(k, l) \le R(k 1, l) + R(k, l 1)$
 - Proved by P. Erdős and G. Szekeres in 1935
 - The 2nd cornerstone of Ramsey theory

- By
$$R(k,2) = R(2,k) = k$$
, $R(k,l) \le {k+l-2 \choose k-1}$

- − It implies $R(k, k) \le 4^k$
 - Best: $k^{-c\frac{\ln k}{\ln \ln k}} 4^k$ by Conlon in 2009

Known bounding ranges

r	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1	1
2		2	3	4	5	6	7	8	9	10
3			6	9	14	18	23	28	36	40–42
4				18	25 ^[5]	36–41	49–61	59 ^[10] —84	73–115	92–149
5					43-48	58–87	80–143	101–216	133–316	149 ^[10] –442
6						102–165	115 ^[10] –298	134 ^[10] —495	183–780	204–1171
7							205–540	217–1031	252–1713	292–2826
8								282-1870	329–3583	343–6090
9									565–6588	581–12677
10										798–23556

Vigleik Angeltveit; Brendan McKay (2017). "R(5,5)≤48". arXiv

Proof of the upper bound

- 2-color the complete graph on R(k-1,l)+R(k,l-1) vertices
- Pick a vertex u
- Define subgraphs G_r and G_b : $\forall v$,

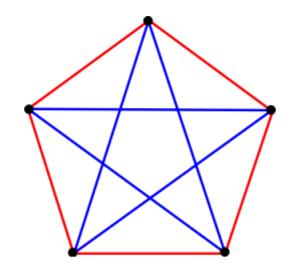
$$-v \in \begin{cases} G_r & \text{if } (u, v) \text{ is red} \\ G_b & \text{if } (u, v) \text{ is blue} \end{cases}$$

- Either $|G_r| \ge R(k-1,l)$ or $|G_b| \ge R(k,l-1)$
 - Do case-by-case analysis

Example: Ramsey Number R(3,3)

$$R(3,3) \le 6$$

Actually, R(3,3) > 5



What is R(k, k)?

- $R(k,k) > 2^{k/2} = \sqrt{2}^k$ (Erdős, 1947)
 - Best: $[1 + o(1)] \frac{k}{e} \sqrt{2}^{1+k}$ by Spencer in 1975
- For any complete graph with at most $2^{k/2}$ vertices, there is a 2-coloring without red K(k) and blue K(k)

Prove by the probabilistic method

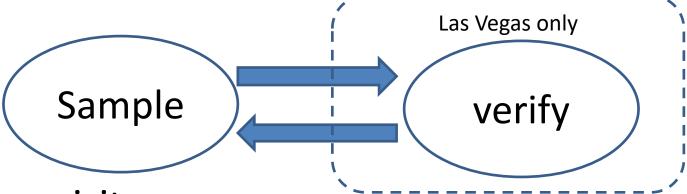
Proof

- Consider a graph ${\it G}$ on ${\it n}$ vertices, and 2-color each edge randomly
 - Uniform distribution on all 2-coloring
- A_S : the subgraph on S is monochromatic
 - S is a k-subset of the vertices
- $Pr(A_S) = 2^{1-\binom{k}{2}}$
- $\Pr(\bigcup_{S} A_{S}) \le {n \choose k} 2^{1 {k \choose 2}} < \frac{2^{1 + \frac{k}{2}}}{k!} \frac{n^{k}}{2^{\frac{k^{2}}{2}}} < 1$ (If $n = \lfloor 2^{k/2} \rfloor$)
- There is a 2-coloring of the edges such that $K(\lfloor 2^{k/2} \rfloor)$ has no monochromatic k subgraph
 - Together with the definition of R(k,k), $R(k,k) > 2^{k/2}$

Randomized Algorithms

But how to find a good coloring? By sampling!

General approach



- Prerequisites
 - Efficient sampling
 - Small probability of failure
 - Efficient verification (Las Vegas only)

First-Moment method

- Use the expectation in probabilistic reasoning
- Two types of first-moment method
 - Expectation argument $\Pr(X \ge \mathbb{E}[X]) > 0, \Pr(X \le \mathbb{E}[X]) > 0$
 - Markov's inequality for non-negative X
 - $\Pr(X \ge a) \le \frac{\mathbb{E}[X]}{a}$
 - When X is integer-valued, $Pr(X \neq 0) = Pr(X > 0) = Pr(X \geq 1) \leq \mathbb{E}[X]$

First-Moment argument

- 3-CNF Boolean formula
 - $-(x_1 \lor x_2 \lor x_3) \land ... \land (\overline{x_1} \lor \overline{x_3} \lor x_4)$
- For such a formula, at most how many clauses can be satisfied simultaneously?
 - MAX-3SAT is NP-hard
- Theorem: there is a truth assignment which satisfies $\geq \frac{7}{8}$ -fraction of the clauses

Proof

- Randomly assign truth values to each variable
- Define r.v. X_i indicating whether clause i is true

•
$$\mathbb{E}[X_i] = \frac{7}{8} \Rightarrow \mathbb{E}[\sum_{i=1}^n X_i] = \frac{7}{8}n$$

- Remark: probability of sampling a good truth assignment $\geq \frac{1}{n+1}$, leading to an efficient alg.
 - Optimum, since impossible to get a $\left(\frac{7}{8} + \varepsilon\right)$ -approx.
 - J. Hastad. Some optimal inapproximability results. STOC 1997

Proof of
$$\Pr\left(\sum X_i \ge \frac{7}{8}n\right) \ge \frac{1}{n+1}$$

- Let $X = \sum X_i$ and $p = \Pr\left(X \ge \frac{7}{8}n\right)$
- $\frac{7}{8}n = \mathbb{E}[X]$

$$= \sum_{i < \frac{7}{8}n} i * \Pr(X = i) + \sum_{i \ge \frac{7}{8}n} i * \Pr(X = i)$$

$$\leq \left(\frac{7}{8}n - \frac{1}{8}\right)(1-p) + np$$

$$= \frac{7}{8}n - \frac{1}{8} + \frac{n+1}{8}p$$

Expectation argument

- Turán Theorem
 - Any graph G=(V,E) contains an independent set of size at least $\frac{|V|}{D+1}$, where $D=\frac{2|E|}{|V|}$
- Proof: Consider the following random process for constructing an independent set *S*:
 - Initialize S to be the empty set
 - For each vertex u in V in random order, if no neighbors of u are in S, add u to S
 - Return S

Proof (Continued)

- *S* is an independent set
- Vertex u is selected with probability $\geq \frac{1}{d(u)+1}$
 - See the next slide
- So, $\mathbb{E}[|S|] \ge \sum \frac{1}{d(u)+1} \ge \frac{|V|}{D+1}$ due to convexity
- Remark: probability of sampling a good independent set is $\geq \frac{1}{2D|V|^2}$

Proof:
$$Pr(u \text{ is selected}) \ge \frac{1}{d(u)+1}$$

- u is selected if and only if A occurs
 - -A: when sampling first occurs in the neighborhood of u, u rather than its neighbors is sampled
 - ullet Neighborhood: u and its then-valid neighbors
 - Denote the neighborhood by N, and the number of then-valid neighbors by x. Note that $x \leq d(u)$
- $Pr(A) = Pr(u \text{ is chosen} | sampling occurs in } N)$

$$=\frac{1}{x+1} \ge \frac{1}{d(u)+1}$$

References

- http://www.cse.buffalo.edu/~hungngo/classe
 s/2011/Spring-694/lectures/sm.pdf
- http://www.cse.cuhk.edu.hk/~chi/csc5160-2007/notes/Probabilistic.ppt
- Erdős. Graph theory and probability I. 1959
- Erdős. Graph theory and probability II. 1961
- Alon&Krivelevich. Extremal and Probabilistic Combinatorics. 2006